圆的面积教学反思
身为一位优秀的教师,教学是我们的任务之一,借助教学反思我们可以学习到很多讲课技巧,优秀的教学反思都具备一些什么特点呢?以下是小编帮大家整理的圆的面积教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
圆的面积教学反思1圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。通过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
一、以旧引新,渗透“转化”思想
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、动手剪拼,体验“化曲为直”
在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也可以拼成三角形和梯形。学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近图形平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形可以让学生自己下课后推导。
再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
三、演示操作,感受知识的形成
通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。
圆的面积教学反思2圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。经过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
一、以旧引新,渗透“转化”思想
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
二、动手剪拼,体验“化曲为直”
在凸现圆的面积的意义以后,经过比较复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也能够拼成三角形和梯形。学生动手剪拼好后,选择其中2~3组进行观察比较,发现如果把一个圆形平均分成的份数越多,这个图形就越接近图形平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形能够让学生自我下课后推导。
再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。
三、演示操作,感受知识的构成
经过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。
圆的面积教学反思3《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生用学过的方法来实现转化和推导。在教学本课时,我注意了这样几点:
1、密切联系学生的生活实际。剪纸是学生所熟悉的,借助这一操作,让学生初步地感知到圆和直线型图形之间的转化,所以在后面估计圆的面积大小时,学生就很自然地想到了两种估计的方法。其次,借助教材中生活场景,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生解决问题的积极性,使全体学生积极参与到数学学习活动中。
2、引导学生观察发现新旧知识的联系,理解发现“化曲为直”。当学生第一次面对求圆这种曲线图形的面积时,老师不是提供现成的转化方法,而是让学生去思考,为什么数圆的面积比数正方形的面积要难,究竟难在什么地方?有什么办法可以解决?这些问题需要学生主动去回顾圆的特征、主动探究学习方法。
3、充分发挥多媒体课件、及圆面积演示器的作用。在教学中,教师通过计算机演示很好地诠释了化曲为直中“无限接近“的极限思想;在推导圆的面积公式时,充分运用圆面积演示器,先展示四种转化的情况,然后分小组进行观察,比较转化前后图形间的联系,最后发现无论转化后的图形是长方形还是平行四边形,无论是否很接近长方形或平行四边形,最后推导出来的面积计算公式是一样的,也有力地说明圆的面积计算公式的正确性。
几何图形课的教学,就是要充分利用已有知识,学会迁移。要充分发挥直观教学的作用,帮助学生由感性向理性、由具体向抽象转化的思维过程。更要发挥现代化教学手段,使学生能在较短的时间内接触较多的信息,完成知识的建构。
圆的面积教学反思4本堂课的教学目标理解圆的面积公式的推导过程,掌握圆的面积的计算方法,培养学生的动手操作能力和逻辑推理能力。在过程设计上,首先联系生活中的小事情导入,意在激起学生继续学习的兴趣,同时让学生意识到数学与生活紧密联系在一起,教育学生仔细观察生活,热爱生活。接着复习圆各部分的名称,特别要提到圆的周长的一半的字母表达。
让学生明确,求圆的面积是在求圆的哪部分。此处联系长方形和正方形的面积的定义。学生通过回忆平行四边形、三角形的面积公式推导,重新熟悉“转化”方法。这些都是为了下面把圆转化到长方形来,从而推导出圆的面积公式做铺垫。
本堂课最重要的环节在解决两个问题:一是可以把圆转化为什么图形来解决;二是转化成长方形后,长方形的长和宽相当于圆的哪部分。解决好这两个问题,课堂教学的效果马上能体现出来。我在教学时使用了两个工具:课件和学具。课件展示把圆分成8等分、16等分、32等分、64等分。把它们再拼在一起,发现拼成的图形越来越近似一个长方形。学具的使用,目的在让学生自己去探讨,从圆到长方形,什么变了,什么没有改变。而拼成的长方形的长和宽相当于圆的什么。通过多次的转化和还原实验,发现拼成的长方形的长相当于圆的周长的一半,长方形的宽相当于圆 ……此处隐藏7393个字……一想,我们在推导平行四边形面积计算公式时,用的是什么办法?(割补法)(多媒体动态演示)
(边演示边讲解:沿着平行四边形的高剪开,将剪开的三角形移至右边补上,拼成一长方形,根据原来平行四边形与拼成的长方形之间的关系推导出平行四边形面积公式)。
导入:把所学图形进行分割、拼摆转化成学过的图形,然后根据学过图形的面积计算公式推导出新图形的面积公式,今天我们也按这种思路来推导圆的面积计算公式。
割补图形(四人小组):
1.将圆4等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
2.将圆8等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
3.将圆16等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
4.将圆32等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?
检查操作结果(多媒体演示):
把圆平均分成4等分,拼成的图形很不规则。
把圆平均分成8等分,拼成的图形近似于平行四边形,边的形状显波浪形。
把圆平均分成16等分,拼成的图形更近似于平行四边形,边的形状较直。
把圆平均分成32等分,拼成的图形非常近似于平行四边形,边的形状更直。
请同学们闭上眼睛想一想:如果我们继续将圆等分成64份,128份,……结果会怎样呢?(对,如果把圆面等分的份数越多,那么拼成的图形会越接近于长方形)
(请睁开眼睛看屏幕,多媒体演示64等分)
推导公式:
刚才我们把圆转化成了长方形,那么如何根据长方形的面积推导出圆的面积公式呢?
我们以把圆16等份,拼成长方形为例来推导(同桌讨论)
拼成的近似长方形的宽相当于圆的什么(半径)
拼成的近似长方形的长相当于圆的什么?(周长一半,c/2=2πr/2=πr)
圆转化成长方形时,尽管图形发生了变化,但什么没变?
因为圆的面积和长方形面积相等,
所以长方形的面积=长×宽
圆的面积=πr×r
=πr·r
学生复述、多媒体演示,集体复述:
近似长方形的长相当于圆的周长的一半(闪动),
近似长方形的宽等于圆的半径(闪动)
长方形的面积=长×宽
所以圆的面积=πr×r
(r×r可以写作r的平方,表示两个r相乘)
用字母表示:S=πr·r
教后反思:学生的学习能力不是靠传授形成的,而是在教学活动中,靠学生自己去“悟”、去“做”、去“经历”、去“体验”的。圆面积计算公式的推导是教学的一个难点。本节课通过直观演示和学生动手操作等方法,充分运用多媒体课件辅助教学,给学生以生动、形象、直观的认识,通过学生多次不同的剪拼,采用转化、想象等,利用等积变形把圆的面积转化成学过的平面图形,逐步归纳出圆的面积计算方法。这样多层次的操作,多角度的思考,既沟通了新旧知识的联系,又培养了学生的推理能力。这个环节,让学生充分经历了操作、观察、想象、推理、反思等数学活动与数学思考过程,明确了圆的面积与半径之间的关系。充分的探究活动,既培养了学生的空间想象能力,也培养了学生的合情推理能力,有效促进了学生思维能力的发展。<
圆的面积教学反思14圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
一、动手操作,推导圆的面积公式
学生通过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。
二、多媒体辅助教学,教学内容立体呈现
通过学生的操作,教师再运用Flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。通过计算机的声、光、色、形,综合表现能力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的积极性、主动性、创造性。
三、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,教师注重了每个练习的指导侧重点。总之教学中教师能够充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学
圆的面积教学反思15圆面积公式的推导是在学生掌握了平行四边形、三角形、梯形的面积公式推导后进行的。所以在设计教学时,特别注意遵循学生的认知规律,重视学生获取知识的过程,重视从学生的生活经验和已有知识出发进行教学设计,为学生自主探究创造条件。
为学生探究做好铺垫。先让学生回忆一下以前学过的平面图形的面积公式的推导方法,并利用多媒体课件再现推导过程。学生在回顾旧知识的过程中,领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成学过的图形来推导的,从而渗透转化思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。让学生按照老师的要求来推导面积公式,学生以小组为单位,通过合作拼摆,把圆转化成已学过的图形,并在操作过程中,学生边操作边思考找出新图形与拼摆成图形之间的联系,然后得出:圆的面积=周长的一半×半径。当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在学生推导出面积公后,我又利用课件的演示,引导学生观察发现“等分的份数越多,拼成的图形就越接近于长方形”,从而渗透极限的思想。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来。学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由地发展,亲身经历了知识的迁移过程,体验了成功的喜悦。
通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能培养学生逻辑思维的能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。